資訊內(nèi)容
迅速掌握Python中的Hook鉤子函數(shù)
YqI少兒編程網(wǎng)-Scratch_Python_教程_免費(fèi)兒童編程學(xué)習(xí)平臺(tái)
大量免費(fèi)學(xué)習(xí)推薦,敬請(qǐng)?jiān)L問python教程(視頻)YqI少兒編程網(wǎng)-Scratch_Python_教程_免費(fèi)兒童編程學(xué)習(xí)平臺(tái)
1. 什么是Hook
YqI少兒編程網(wǎng)-Scratch_Python_教程_免費(fèi)兒童編程學(xué)習(xí)平臺(tái)
經(jīng)常會(huì)聽到鉤子函數(shù)(hook function)這個(gè)概念,**近在看目標(biāo)檢測(cè)開源框架mmdetection,里面也出現(xiàn)大量Hook的編程方式,那到底什么是hook?hook的作用是什么?YqI少兒編程網(wǎng)-Scratch_Python_教程_免費(fèi)兒童編程學(xué)習(xí)平臺(tái)
what is hook ?鉤子hook,顧名思義,可以理解是一個(gè)掛鉤,作用是有需要的時(shí)候掛一個(gè)東西上去。具體的解釋是:鉤子函數(shù)是把我們自己實(shí)現(xiàn)的hook函數(shù)在某一時(shí)刻掛接到目標(biāo)掛載點(diǎn)上。YqI少兒編程網(wǎng)-Scratch_Python_教程_免費(fèi)兒童編程學(xué)習(xí)平臺(tái)
hook函數(shù)的作用 舉個(gè)例子,hook的概念在windows桌面軟件開發(fā)很常見,特別是各種事件觸發(fā)的機(jī)制; 比如C++的MFC程序中,要監(jiān)聽鼠標(biāo)左鍵按下的時(shí)間,MFC提供了一個(gè)onLeftKeyDown的鉤子函數(shù)。很顯然,MFC框架并沒有為我們實(shí)現(xiàn)onLeftKeyDown具體的操作,只是為我們提供一個(gè)鉤子,當(dāng)我們需要處理的時(shí)候,只要去重寫這個(gè)函數(shù),把我們需要操作掛載在這個(gè)鉤子里,如果我們不掛載,MFC事件觸發(fā)機(jī)制中執(zhí)行的就是空的操作。YqI少兒編程網(wǎng)-Scratch_Python_教程_免費(fèi)兒童編程學(xué)習(xí)平臺(tái)
從上面可知YqI少兒編程網(wǎng)-Scratch_Python_教程_免費(fèi)兒童編程學(xué)習(xí)平臺(tái)
hook函數(shù)是程序中預(yù)定義好的函數(shù),這個(gè)函數(shù)處于原有程序流程當(dāng)中(暴露一個(gè)鉤子出來)YqI少兒編程網(wǎng)-Scratch_Python_教程_免費(fèi)兒童編程學(xué)習(xí)平臺(tái)
我們需要再在有流程中鉤子定義的函數(shù)塊中實(shí)現(xiàn)某個(gè)具體的細(xì)節(jié),需要把我們的實(shí)現(xiàn),掛接或者注冊(cè)(register)到鉤子里,使得hook函數(shù)對(duì)目標(biāo)可用YqI少兒編程網(wǎng)-Scratch_Python_教程_免費(fèi)兒童編程學(xué)習(xí)平臺(tái)
hook 是一種編程機(jī)制,和具體的語言沒有直接的關(guān)系YqI少兒編程網(wǎng)-Scratch_Python_教程_免費(fèi)兒童編程學(xué)習(xí)平臺(tái)
如果從設(shè)計(jì)模式上看,hook模式是模板方法的擴(kuò)展YqI少兒編程網(wǎng)-Scratch_Python_教程_免費(fèi)兒童編程學(xué)習(xí)平臺(tái)
鉤子只有注冊(cè)的時(shí)候,才會(huì)使用,所以原有程序的流程中,沒有注冊(cè)或掛載時(shí),執(zhí)行的是空(即沒有執(zhí)行任何操作)YqI少兒編程網(wǎng)-Scratch_Python_教程_免費(fèi)兒童編程學(xué)習(xí)平臺(tái)
本文用python來解釋hook的實(shí)現(xiàn)方式,并展示在開源項(xiàng)目中hook的應(yīng)用案例。hook函數(shù)和我們常聽到另外一個(gè)名稱:回調(diào)函數(shù)(callback function)功能是類似的,可以按照同種模式來理解。YqI少兒編程網(wǎng)-Scratch_Python_教程_免費(fèi)兒童編程學(xué)習(xí)平臺(tái)
YqI少兒編程網(wǎng)-Scratch_Python_教程_免費(fèi)兒童編程學(xué)習(xí)平臺(tái)
據(jù)我所知,hook函數(shù)**常使用在某種流程處理當(dāng)中。這個(gè)流程往往有很多步驟。hook函數(shù)常常掛載在這些步驟中,為增加額外的一些操作,提供靈活性。YqI少兒編程網(wǎng)-Scratch_Python_教程_免費(fèi)兒童編程學(xué)習(xí)平臺(tái)
下面舉一個(gè)簡(jiǎn)單的例子,這個(gè)例子的目的是實(shí)現(xiàn)一個(gè)通用往隊(duì)列中插入內(nèi)容的功能。流程步驟有2個(gè)YqI少兒編程網(wǎng)-Scratch_Python_教程_免費(fèi)兒童編程學(xué)習(xí)平臺(tái)
需要再插入隊(duì)列前,對(duì)數(shù)據(jù)進(jìn)行篩選 input_filter_fnYqI少兒編程網(wǎng)-Scratch_Python_教程_免費(fèi)兒童編程學(xué)習(xí)平臺(tái)
插入隊(duì)列 insert_queueYqI少兒編程網(wǎng)-Scratch_Python_教程_免費(fèi)兒童編程學(xué)習(xí)平臺(tái)
class ContentStash(object): """ content stash for online operation pipeline is 1. input_filter: filter some contents, no use to user 2. insert_queue(redis or other broker): insert useful content to queue """ def __init__(self): self.input_filter_fn = None self.broker = [] def register_input_filter_hook(self, input_filter_fn): """ register input filter function, parameter is content dict Args: input_filter_fn: input filter function Returns: """ self.input_filter_fn = input_filter_fn def insert_queue(self, content): """ insert content to queue Args: content: dict Returns: """ self.broker.append(content) def input_pipeline(self, content, use=False): """ pipeline of input for content stash Args: use: is use, defaul False content: dict Returns: """ if not use: return # input filter if self.input_filter_fn: _filter = self.input_filter_fn(content) # insert to queue if not _filter: self.insert_queue(content) # test ## 實(shí)現(xiàn)一個(gè)你所需要的鉤子實(shí)現(xiàn):比如如果content 包含time就過濾掉,否則插入隊(duì)列 def input_filter_hook(content): """ test input filter hook Args: content: dict Returns: None or content """ if content.get('time') is None: return else: return content # 原有程序 content = {'filename': 'test.jpg', 'b64_file': "#test", 'data': {"result": "cat", "probility": 0.9}} content_stash = ContentStash('audit', work_dir='') # 掛上鉤子函數(shù), 可以有各種不同鉤子函數(shù)的實(shí)現(xiàn),但是要主要函數(shù)輸入輸出必須保持原有程序中一致,比如這里是content content_stash.register_input_filter_hook(input_filter_hook) # 執(zhí)行流程 content_stash.input_pipeline(content) 3. hook在開源框架中的應(yīng)用3.1 keras在深度學(xué)習(xí)訓(xùn)練流程中,hook函數(shù)體現(xiàn)的淋漓盡致。YqI少兒編程網(wǎng)-Scratch_Python_教程_免費(fèi)兒童編程學(xué)習(xí)平臺(tái)
一個(gè)訓(xùn)練過程(不包括數(shù)據(jù)準(zhǔn)備),會(huì)輪詢多次訓(xùn)練集,每次稱為一個(gè)epoch,每個(gè)epoch又分為多個(gè)batch來訓(xùn)練。流程先后拆解成:YqI少兒編程網(wǎng)-Scratch_Python_教程_免費(fèi)兒童編程學(xué)習(xí)平臺(tái)
開始訓(xùn)練YqI少兒編程網(wǎng)-Scratch_Python_教程_免費(fèi)兒童編程學(xué)習(xí)平臺(tái)
訓(xùn)練一個(gè)epoch前YqI少兒編程網(wǎng)-Scratch_Python_教程_免費(fèi)兒童編程學(xué)習(xí)平臺(tái)
訓(xùn)練一個(gè)batch前YqI少兒編程網(wǎng)-Scratch_Python_教程_免費(fèi)兒童編程學(xué)習(xí)平臺(tái)
訓(xùn)練一個(gè)batch后YqI少兒編程網(wǎng)-Scratch_Python_教程_免費(fèi)兒童編程學(xué)習(xí)平臺(tái)
訓(xùn)練一個(gè)epoch后YqI少兒編程網(wǎng)-Scratch_Python_教程_免費(fèi)兒童編程學(xué)習(xí)平臺(tái)
評(píng)估驗(yàn)證集YqI少兒編程網(wǎng)-Scratch_Python_教程_免費(fèi)兒童編程學(xué)習(xí)平臺(tái)
結(jié)束訓(xùn)練YqI少兒編程網(wǎng)-Scratch_Python_教程_免費(fèi)兒童編程學(xué)習(xí)平臺(tái)
這些步驟是穿插在訓(xùn)練一個(gè)batch數(shù)據(jù)的過程中,這些可以理解成是鉤子函數(shù),我們可能需要在這些鉤子函數(shù)中實(shí)現(xiàn)一些定制化的東西,比如在訓(xùn)練一個(gè)epoch后我們要保存下訓(xùn)練的模型,在結(jié)束訓(xùn)練時(shí)用**好的模型執(zhí)行下測(cè)試集的效果等等。YqI少兒編程網(wǎng)-Scratch_Python_教程_免費(fèi)兒童編程學(xué)習(xí)平臺(tái)
keras中是通過各種回調(diào)函數(shù)來實(shí)現(xiàn)鉤子hook功能的。這里放一個(gè)callback的父類,定制時(shí)只要繼承這個(gè)父類,實(shí)現(xiàn)你過關(guān)注的鉤子就可以了。YqI少兒編程網(wǎng)-Scratch_Python_教程_免費(fèi)兒童編程學(xué)習(xí)平臺(tái)
@keras_export('keras.callbacks.Callback') class Callback(object): """Abstract base class used to build new callbacks. Attributes: params: Dict. Training parameters (eg. verbosity, batch size, number of epochs...). model: Instance of `keras.models.Model`. Reference of the model being trained. The `logs` dictionary that callback methods take as argument will contain keys for quantities relevant to the current batch or epoch (see method-specific docstrings). """ def __init__(self): self.validation_data = None # pylint: disable=g-missing-from-attributes self.model = None # Whether this Callback should only run on the chief worker in a # Multi-Worker setting. # TODO(omalleyt): Make this attr public once solution is stable. self._chief_worker_only = None self._supports_tf_logs = False def set_params(self, params): self.params = params def set_model(self, model): self.model = model @doc_controls.for_subclass_implementers @generic_utils.default def on_batch_begin(self, batch, logs=None): """A backwards compatibility alias for `on_train_batch_begin`.""" @doc_controls.for_subclass_implementers @generic_utils.default def on_batch_end(self, batch, logs=None): """A backwards compatibility alias for `on_train_batch_end`.""" @doc_controls.for_subclass_implementers def on_epoch_begin(self, epoch, logs=None): """Called at the start of an epoch. Subclasses should override for any actions to run. This function should only be called during TRAIN mode. Arguments: epoch: Integer, index of epoch. logs: Dict. Currently no data is passed to this argument for this method but that may change in the future. """ @doc_controls.for_subclass_implementers def on_epoch_end(self, epoch, logs=None): """Called at the end of an epoch. Subclasses should override for any actions to run. This function should only be called during TRAIN mode. Arguments: epoch: Integer, index of epoch. logs: Dict, metric results for this training epoch, and for the validation epoch if validation is performed. Validation result keys are prefixed with `val_`. """ @doc_controls.for_subclass_implementers @generic_utils.default def on_train_batch_begin(self, batch, logs=None): """Called at the beginning of a training batch in `fit` methods. Subclasses should override for any actions to run. Arguments: batch: Integer, index of batch within the current epoch. logs: Dict, contains the return value of `model.train_step`. Typically, the values of the `Model`'s metrics are returned. Example: `{'loss': 0.2, 'accuracy': 0.7}`. """ # For backwards compatibility. self.on_batch_begin(batch, logs=logs) @doc_controls.for_subclass_implementers @generic_utils.default def on_train_batch_end(self, batch, logs=None): """Called at the end of a training batch in `fit` methods. Subclasses should override for any actions to run. Arguments: batch: Integer, index of batch within the current epoch. logs: Dict. Aggregated metric results up until this batch. """ # For backwards compatibility. self.on_batch_end(batch, logs=logs) @doc_controls.for_subclass_implementers @generic_utils.default def on_test_batch_begin(self, batch, logs=None): """Called at the beginning of a batch in `evaluate` methods. Also called at the beginning of a validation batch in the `fit` methods, if validation data is provided. Subclasses should override for any actions to run. Arguments: batch: Integer, index of batch within the current epoch. logs: Dict, contains the return value of `model.test_step`. Typically, the values of the `Model`'s metrics are returned. Example: `{'loss': 0.2, 'accuracy': 0.7}`. """ @doc_controls.for_subclass_implementers @generic_utils.default def on_test_batch_end(self, batch, logs=None): """Called at the end of a batch in `evaluate` methods. Also called at the end of a validation batch in the `fit` methods, if validation data is provided. Subclasses should override for any actions to run. Arguments: batch: Integer, index of batch within the current epoch. logs: Dict. Aggregated metric results up until this batch. """ @doc_controls.for_subclass_implementers @generic_utils.default def on_predict_batch_begin(self, batch, logs=None): """Called at the beginning of a batch in `predict` methods. Subclasses should override for any actions to run. Arguments: batch: Integer, index of batch within the current epoch. logs: Dict, contains the return value of `model.predict_step`, it typically returns a dict with a key 'outputs' containing the model's outputs. """ @doc_controls.for_subclass_implementers @generic_utils.default def on_predict_batch_end(self, batch, logs=None): """Called at the end of a batch in `predict` methods. Subclasses should override for any actions to run. Arguments: batch: Integer, index of batch within the current epoch. logs: Dict. Aggregated metric results up until this batch. """ @doc_controls.for_subclass_implementers def on_train_begin(self, logs=None): """Called at the beginning of training. Subclasses should override for any actions to run. Arguments: logs: Dict. Currently no data is passed to this argument for this method but that may change in the future. """ @doc_controls.for_subclass_implementers def on_train_end(self, logs=None): """Called at the end of training. Subclasses should override for any actions to run. Arguments: logs: Dict. Currently the output of the last call to `on_epoch_end()` is passed to this argument for this method but that may change in the future. """ @doc_controls.for_subclass_implementers def on_test_begin(self, logs=None): """Called at the beginning of evaluation or validation. Subclasses should override for any actions to run. Arguments: logs: Dict. Currently no data is passed to this argument for this method but that may change in the future. """ @doc_controls.for_subclass_implementers def on_test_end(self, logs=None): """Called at the end of evaluation or validation. Subclasses should override for any actions to run. Arguments: logs: Dict. Currently the output of the last call to `on_test_batch_end()` is passed to this argument for this method but that may change in the future. """ @doc_controls.for_subclass_implementers def on_predict_begin(self, logs=None): """Called at the beginning of prediction. Subclasses should override for any actions to run. Arguments: logs: Dict. Currently no data is passed to this argument for this method but that may change in the future. """ @doc_controls.for_subclass_implementers def on_predict_end(self, logs=None): """Called at the end of prediction. Subclasses should override for any actions to run. Arguments: logs: Dict. Currently no data is passed to this argument for this method but that may change in the future. """ def _implements_train_batch_hooks(self): """Determines if this Callback should be called for each train batch.""" return (not generic_utils.is_default(self.on_batch_begin) or not generic_utils.is_default(self.on_batch_end) or not generic_utils.is_default(self.on_train_batch_begin) or not generic_utils.is_default(self.on_train_batch_end))這些鉤子的原始程序是在模型訓(xùn)練流程中的YqI少兒編程網(wǎng)-Scratch_Python_教程_免費(fèi)兒童編程學(xué)習(xí)平臺(tái)
keras源碼位置: tensorflowpythonkerasengine raining.pyYqI少兒編程網(wǎng)-Scratch_Python_教程_免費(fèi)兒童編程學(xué)習(xí)平臺(tái)
部分摘錄如下(## I am hook):YqI少兒編程網(wǎng)-Scratch_Python_教程_免費(fèi)兒童編程學(xué)習(xí)平臺(tái)
# Container that configures and calls `tf.keras.Callback`s. if not isinstance(callbacks, callbacks_module.CallbackList): callbacks = callbacks_module.CallbackList( callbacks, add_history=True, add_progbar=verbose != 0, model=self, verbose=verbose, epochs=epochs, steps=data_handler.inferred_steps) ## I am hook callbacks.on_train_begin() training_logs = None # Handle fault-tolerance for multi-worker. # TODO(omalleyt): Fix the ordering issues that mean this has to # happen after `callbacks.on_train_begin`. data_handler._initial_epoch = ( # pylint: disable=protected-access self._maybe_load_initial_epoch_from_ckpt(initial_epoch)) for epoch, iterator in data_handler.enumerate_epochs(): self.reset_metrics() callbacks.on_epoch_begin(epoch) with data_handler.catch_stop_iteration(): for step in data_handler.steps(): with trace.Trace( 'TraceContext', graph_type='train', epoch_num=epoch, step_num=step, batch_size=batch_size): ## I am hook callbacks.on_train_batch_begin(step) tmp_logs = train_function(iterator) if data_handler.should_sync: context.async_wait() logs = tmp_logs # No error, now safe to assign to logs. end_step = step + data_handler.step_increment callbacks.on_train_batch_end(end_step, logs) epoch_logs = copy.copy(logs) # Run validation. ## I am hook callbacks.on_epoch_end(epoch, epoch_logs)3.2 mmdetectionmmdetection是一個(gè)目標(biāo)檢測(cè)的開源框架,集成了許多不同的目標(biāo)檢測(cè)深度學(xué)習(xí)算法(pytorch版),如faster-rcnn, fpn, retianet等。里面也大量使用了hook,暴露給應(yīng)用實(shí)現(xiàn)流程中具體部分。YqI少兒編程網(wǎng)-Scratch_Python_教程_免費(fèi)兒童編程學(xué)習(xí)平臺(tái)
詳見https://github.com/open-mmlab/mmdetectionYqI少兒編程網(wǎng)-Scratch_Python_教程_免費(fèi)兒童編程學(xué)習(xí)平臺(tái)
這里看一個(gè)訓(xùn)練的調(diào)用例子(摘錄)(https://github.com/open-mmlab/mmdetection/blob/5d592154cca589c5113e8aadc8798bbc73630d98/mmdet/apis/train.py)YqI少兒編程網(wǎng)-Scratch_Python_教程_免費(fèi)兒童編程學(xué)習(xí)平臺(tái)
def train_detector(model, dataset, cfg, distributed=False, validate=False, timestamp=None, meta=None): logger = get_root_logger(cfg.log_level) # prepare data loaders # put model on gpus # build runner optimizer = build_optimizer(model, cfg.optimizer) runner = EpochBasedRunner( model, optimizer=optimizer, work_dir=cfg.work_dir, logger=logger, meta=meta) # an ugly workaround to make .log and .log.json filenames the same runner.timestamp = timestamp # fp16 setting # register hooks runner.register_training_hooks(cfg.lr_config, optimizer_config, cfg.checkpoint_config, cfg.log_config, cfg.get('momentum_config', None)) if distributed: runner.register_hook(DistSamplerSeedHook()) # register eval hooks if validate: # Support batch_size > 1 in validation eval_cfg = cfg.get('evaluation', {}) eval_hook = DistEvalHook if distributed else EvalHook runner.register_hook(eval_hook(val_dataloader, **eval_cfg)) # user-defined hooks if cfg.get('custom_hooks', None): custom_hooks = cfg.custom_hooks assert isinstance(custom_hooks, list), f'custom_hooks expect list type, but got {type(custom_hooks)}' for hook_cfg in cfg.custom_hooks: assert isinstance(hook_cfg, dict), 'Each item in custom_hooks expects dict type, but got ' f'{type(hook_cfg)}' hook_cfg = hook_cfg.copy() priority = hook_cfg.pop('priority', 'NORMAL') hook = build_from_cfg(hook_cfg, HOOKS) runner.register_hook(hook, priority=priority)4. 總結(jié)本文介紹了hook的概念和應(yīng)用,并給出了python的實(shí)現(xiàn)細(xì)則。希望對(duì)比有幫助。總結(jié)如下:YqI少兒編程網(wǎng)-Scratch_Python_教程_免費(fèi)兒童編程學(xué)習(xí)平臺(tái)
hook函數(shù)是流程中預(yù)定義好的一個(gè)步驟,沒有實(shí)現(xiàn)YqI少兒編程網(wǎng)-Scratch_Python_教程_免費(fèi)兒童編程學(xué)習(xí)平臺(tái)
掛載或者注冊(cè)時(shí), 流程執(zhí)行就會(huì)執(zhí)行這個(gè)鉤子函數(shù)YqI少兒編程網(wǎng)-Scratch_Python_教程_免費(fèi)兒童編程學(xué)習(xí)平臺(tái)
回調(diào)函數(shù)和hook函數(shù)功能上是一致的YqI少兒編程網(wǎng)-Scratch_Python_教程_免費(fèi)兒童編程學(xué)習(xí)平臺(tái)
hook設(shè)計(jì)方式帶來靈活性,如果流程中有一個(gè)步驟,你想讓調(diào)用方來實(shí)現(xiàn),你可以用hook函數(shù)YqI少兒編程網(wǎng)-Scratch_Python_教程_免費(fèi)兒童編程學(xué)習(xí)平臺(tái)
相關(guān)免費(fèi)學(xué)習(xí)推薦:php編程(視頻)
YqI少兒編程網(wǎng)-Scratch_Python_教程_免費(fèi)兒童編程學(xué)習(xí)平臺(tái)
以上就是迅速掌握Python中的Hook鉤子函數(shù)的詳細(xì)內(nèi)容,更多請(qǐng)關(guān)注少兒編程網(wǎng)其它相關(guān)文章!YqI少兒編程網(wǎng)-Scratch_Python_教程_免費(fèi)兒童編程學(xué)習(xí)平臺(tái)

- 上一篇
用Python Tkinter實(shí)現(xiàn)剪刀石頭布小游戲
簡(jiǎn)介python視頻教程欄目介紹使用Tkinter實(shí)現(xiàn)剪刀石頭布相關(guān)免費(fèi)學(xué)習(xí)推薦:python視頻教程編寫剪刀石頭布游戲讓我們使用Python3和Tkinter開發(fā)相同的游戲。我們可以將游戲命名為Rock-Paper-Scissors-Lizard-Spock。規(guī)則和玩法RockcrushesSciss
- 下一篇
詳解使用PyTorch實(shí)現(xiàn)目標(biāo)檢測(cè)與跟蹤
簡(jiǎn)介python教程欄目介紹使用PyTorch實(shí)現(xiàn)目標(biāo)檢測(cè)與跟蹤大量免費(fèi)學(xué)習(xí)推薦,敬請(qǐng)?jiān)L問python教程(視頻)引言在昨天的文章中,我們介紹了如何在PyTorch中使用您自己的圖像來訓(xùn)練圖像分類器,然后使用它來進(jìn)行圖像識(shí)別。本文將展示如何使用預(yù)訓(xùn)練的分類器檢測(cè)圖像中的多個(gè)對(duì)象,并在視頻中跟蹤它們。圖像