資訊內容
SCRATCH與圖形
親愛的朋友們,相信你們都用畫筆來畫過三角形、正方形、五邊形等圖形對吧。你們想不想知道還可以用更酷的方式來畫這些多邊形呢?CODER這次就帶你用scratch編程方式來實現這些效果哦。
01
效果圖
我們先來看看,正三邊形、正四邊形、正五邊形、正六邊形等等,通過旋轉形成的美麗的分形圖形吧!




效果圖




*此處可以向右滑動*
02
編程思路
繪制圖形要用到運動積木的旋轉角度和畫筆積木。因為要畫正多邊形旋轉的分形圖形,所以同樣用到控制積木的重復執行。繪制正多邊形需要用到數學知識任意多邊形的外角和等于360°。
第一:先來看看運動積木的旋轉角度(如圖1)向右是面向90°,向左是面向-90°,向上是面向0°,向下是面向180°。

圖1
第二:繪制正多邊形的旋轉角度思路(如圖2)
畫旋轉的圖形,旋轉的都是外角。我們都知道任意多邊形的外角和等于360°。所以在繪制正多邊形時,旋轉的角度等于360°除以正多邊形的邊數。

圖2
03
腳本展示

正四邊形
讓我們一起來看看繪制正四邊形的腳本展示吧(如圖3)
腳本分析:
第一步:當綠旗被點擊時,初始化方向向右,移到原點。
第二步:初始化筆的顏色,可以設置你喜歡的顏色哦。畫筆顏色的值:0代表紅色 70代表綠色? 130代表藍色? 170代表粉色 。然后初始化畫筆的粗細,進行繪制之前,要先擦除,然后落筆。
第三步:因為是繪制正四邊形,所以正四邊形的每條邊的大小都相等,就是一個重復執行的循環。另外旋轉的角度為360°/4=90°
最后完成啦!小朋友動手實現一下吧
可以嘗試繪制一下以下圖形哦
三邊形:3次 120度
四邊形:4次 90度
五邊形:5次 72度
六邊形 :6次 60度
......

圖3

圓
接下來我們一起來看看如何畫圓吧

圖3

分形圖形思路
下面看看分形圖形的思路吧(如圖4)
繪制分形圖形就是一個正多邊形旋轉而成。例如繪制正四邊形的分形圖形,就是在繪制完正四邊形后,然后添加一個外層循環,循環次數可以是浮點數類型,不一定要整數類型。只要旋轉次數*旋轉角度=360°即可。
可以嘗試以下的組合:
(1)5次 72°????? (2)10次? 36°
(3)72次 5°??????? (4)36次 10°
注意:若速度慢,使用加速度模式

圖4
當然,也可以通過自己手動繪制其他圖形,然后通過旋轉和圖章,形成其他的圖形!例如(圖5)

圖5

其他特別的三角形
想要做其他的三角形,需要我們先來認識一下正弦定理和余弦定理(如圖6)

圖6

等腰直角三角形
我們一起來看看等腰直角三角形的思路(如圖7和圖8)

圖7

圖8
繪制等腰直角三角形方法總結:移動x步,左轉90°,然后再移動x步,左轉135°。移動2x步,再旋轉135°(如圖9)

圖9

30°-60°-90°三角形
現在來聊聊30°-60°-90°三角形吧(圖10、圖11)

圖10

圖11

3:4:5三角形
繪制3:4:5三角形,有一個規律是邊長是3x,4x,5x,然后求出每個角度,即可繪制出來。(如圖12、圖13)

圖12

圖13

還可以繪制任意三角形呢

圖14

繪制矩形

圖15

繪制平行四邊形

圖16

圖17

繪制梯形

圖18

繪制風箏形

圖19

PS:scratch雖然是一個鼠標拖拽為主的,模塊型編程,但與其他編程形式相同的是:提出問題——分析問題——解決問題,其中最主要的是將大問題分解成一個個小問題,然后利用自己已經學過的知識進行有針對性的解決,這就是編程思維,也是我們日常生活學習工作中需要善加利用的邏輯思維。
聲明:本文章由網友投稿作為教育分享用途,如有侵權原作者可通過郵件及時和我們聯系刪除

- 上一篇
少兒編程的Scratch是什么?聽說phthon和C++更有用?真是這樣的么?
今年編程已納入浙江高考,在重慶編程也已納入中小學必修課程,這讓很多家長已經開始意識到了讓孩子學習編程的必要性。 但是,在選擇?門編程的語?時?較糾結,相信下面這些疑惑,你肯定也有過: (1)“scratch的那種拖塊看起來像玩游戲,不如 Pyt
- 下一篇
改善老電腦使用Scratch3.0卡頓的有效方法
Scratch3.0在2019年1月正式推出,扁平化的風格的確引人注目。 和Scratch2.0相比,Scratch3.0除了軟件外觀、布局、菜單設定等有重大調整以外,還增加了對AI人工智能、樂高器材的支持。 總的來說,Scratch3.0讓人